
Reducing Waste in Extreme Scale Systems through Introspective Analysis

Leonardo Bautista-Gomez∗, Ana Gainaru†‡, Swann Perarnau∗, Devesh Tiwari§,
Saurabh Gupta§, Christian Engelmann§, Franck Cappello∗ and Marc Snir∗†

∗Argonne National Laboratory
†University of Illinois at Urbana-Champaign

‡National Center for Supercomputing and Applications
§Oak Ridge National Laboratory

Abstract—Resilience is an important challenge for extreme-
scale supercomputers. Today, failures in supercomputers are
assumed to be uniformly distributed in time. However, recent
studies show that failures in high-performance computing
systems are partially correlated in time, generating periods of
higher failure density. Our study of the failure logs of multiple
supercomputers show that periods of higher failure density
occur with up to three times more than the average. We design a
monitoring system that listens to hardware events and forwards
important events to the runtime to detect those regime changes.
We implement a runtime capable of receiving notifications and
adapt dynamically. In addition, we build an analytical model
to predict the gains that such dynamic approach could achieve.
We demonstrate that in some systems, our approach can reduce
the wasted time by over 30%.

Keywords-Supercomputers, Fault Tolerance, Resilience,
Silent Data Corruption, Soft Errors, Introspective Systems.

I. INTRODUCTION

High-performance computing (HPC) is changing the way
scientists make discoveries. Future-generation supercomput-
ers will achieve unprecedented computational performance,
thanks to their larger number of components and enhanced
parallelism. However, more components and more system
complexity also bring higher failure rates[7], [27]. To deal
with failures, HPC systems implement checkpoint/restart
(CR). Scientific applications are checkpointed to reliable
storage and restarted from the last checkpoint upon a failure.
The frequency at which a system should checkpoint is an opti-
mization problem. Checkpointing too frequently will produce
unnecessary waste, and checkpointing not frequently enough
will produce long re-executions. The optimal checkpoint
interval is the subject of numerous research works [32], [11].
It is generally found by using two parameters: the mean
time between failure (MTBF) and the cost of checkpointing.
These approaches assume that failures are exponentially
distributed in time. Several recent studies [16], [25] have
shown that failures in HPC systems are correlated in time
and produce periods with a high failure density. We call
those periods of time degraded regime, as opposed to the
normal regime. Using the same fault tolerance policies (e.g.,
the same checkpoint interval) during different regimes is
inefficient. This new knowledge brings new opportunities to
improve efficiency through dynamic adaptation of the fault

tolerance runtime. Unfortunately, current systems are unable
to recognize in real time when the system is functioning
in degraded mode. Moreover, current runtime systems are
incapable of dynamically adapting to changes in the system.
Also, it is uncertain how much benefit can we obtain using
this failure regime knowledge.

In this paper, we study the failure logs of multiple HPC
systems, including Titan, Blue Waters and Tsubame2.5. We
confirm that those systems have periods of high failure
density, up to three times higher than the standard failure
density of those machines. Then, we analyze different
types of failures and discover that some are clear markers
that could be used to recognize when the system enters
one of those degraded regimes. Accordingly, we develop
a distributed monitoring system that listens to hardware
events, analyzes them, filters them, and forward the important
ones to the runtime. We enhance FTI [3], a multilevel
checkpointing library, to be able to receive notifications and
dynamically adapt during runtime, in order to reduce wasted
time. Moreover, we develop an analytical model that shows
that for some systems, wasted time can be reduced by over
30% using our monitoring system and the dynamic runtime
adaptation. This capacity of self-analysis (i.e., introspection)
and dynamic adaptation will become more important as
systems become more dense and failures more correlated.

The rest of this paper is organized as follows. Section II
studies the failure regimes of multiple HPC systems and the
detection of those regimes. Section III explains our monitor-
ing system and presents our dynamic runtime. Section IV
introduces our analytical model to predict the reduction of
wasted time and discuss the advantages and limitations of our
approach. Section V discusses related work, and Section VI
concludes the paper.

II. FAILURE REGIMES IN HPC SYSTEMS

We analyzed several HPC systems of different generations
and characteristics in order to observe the behavior of the
failure events. For this purpose, we gathered failure data
for Mercury, a previous-generation cluster at the National
Center for Supercomputing Applications (NCSA) [1]; for
several systems from the Los Alamos National Laboratory
(LANL) [27]; for Tsubame 2.5, a supercomputer at the



GSIC Center at the Tokyo Institute of Technology in Japan,
ranked 5th in 2011 [19]; for Blue Waters [23]; and for Titan
from Oak Ridge National Laboratory, currently the fastest
supercomputer in the USA [19].

A. System characteristics

The Mercury cluster was a production high-performance
computing system at the NCSA used for scientific applica-
tions as part of TeraGrid over a five-year period The cluster
started with 256 compute nodes, half having large amounts
of memory (12 GB). Later, an additional 635 compute
nodes were added with faster processors. Each compute
node consisted of two Itanium processors running at 1.3 or
1.5 GHz with 4 or 12 GB ECC protected memory.

The cluster was operational from January 2004 until March
2010 when it was decommissioned. During this time, the most
frequent failures can be divided in six categories: (1) errors
in memory that were uncorrectable by ECC; (2) processor
cache errors; (3) hardware-reported error in a device on the
SCSI bus; (4) NFS-related error indicating unavailability of
the network file system for a machine; (5) PBS (Portable
Batch System) daemon failure to communicate; and (6) an
unexpected node restart caused by unexpected hardware
failure indicated by a node’s inability to connect to either
the gigabit or management networks after a restart. Details
about each failure type can be found in [22].

Table I
SYSTEM CHARACTERISTICS

System Timeframe MTBF (h) Hardware Software Network Environmental Other
Blue Waters 2012/12/28-2014/02/01 11.2 47.12% 33.69% 11.84% 3.34% 4.01%

Tsubame 2015/01/01-2015/02/28 10.4 67.24% 12.79% 6.56% 7.66% 5.75%
Mercury 2005/01/01-2009/12/26 16.0 52.38% 30.66% 10.28% 2.66% 4.02%

LANL all 1996/06/01-2005/06/01 23.0 61.58% 23.02% 1.8% 1.55% 12.05%

LANL has collected data for 22 of their supercomputing
clusters, for five years. The laboratoy publishes data from
system logs and information regarding failures that occurred
in the system’s lifetime. This data has been intensively ana-
lyzed in order to extract data statistics for failure distribution
and for root cause analysis [34], [27].

Most of these systems are large clusters of either NUMA
(non-uniform memory access) nodes, or two-way and four-
way SMP (symmetric multi processing) nodes. In total
all systems include 4,750 nodes and 24,101 processors.
In general, systems vary widely in size, with the number
of nodes ranging from 1 to 1,024 and the number of
processors from 4 to 6,152. We analyzed five of these systems
individually, as well as investigated the failure characteristics
of all systems combined. A failure record for each system
contains the time when the failure started, when it was
resolved, the system and node affected, the type of workload
running on the node, and the root cause.

The Blue Waters system is a Cray XE/XK hybrid machine
at the National Center for Supercomputing Applications
composed of AMD 6276 "Interlagos" processors and NVIDIA

GK110 "Kepler" accelerators all connected by the Cray
Gemini torus interconnect. Blue Waters contains over 25,000
computing nodes, reaching a peak performance of 11.6
Petaflops and offering a total system memory of over 1.4 PB.
Information about failures is kept in a failure log where
Cray system administrators write down the approximate
timestamp for each failure and the possible cause. This
file has been analyzed and validated by NCSA staff; their
observations were published in [13]. Overall, we analyzed
failures occurring from September 2013 to February 2014.

The Tsubame supercomputer was deployed at the GSIC
Center in 2006 and has been providing computing and storage
resources for research at the Tokyo Institute of Technology in
Japan. With 74,358 cores, Tsubame 2.5 can reach a theoretical
peak performance of 5.6 petaflops. The machine contains
over 12,000 Xeon X5670 6C 2.93 GHz processors connected
through a InfiniBand QDR network and a total of close to
75 TB of memory. We analyzed the failures experienced by
this system for several months in 2015.

Table II
SYSTEMS ANALYSIS

System LANL02 LANL08 LANL18 LANL19 LANL20 Mercury Tsubame 2 BlueWater Titan
Normal reg. px 73.81 74.15 78.36 75.05 78.19 76.69 70.73 76.07 72.52
Normal reg. pf 33.92 26.42 40.84 38.58 31.05 35.10 22.78 25.05 27.77
Normal reg. pf/px 00.46 00.36 00.52 00.51 00.40 00.46 00.32 00.33 00.38
Degraded r. px 26.19 25.85 21.64 24.95 21.81 23.31 29.27 23.93 27.48
Degraded r. pf 66.08 73.58 59.16 61.42 68.95 64.90 77.22 74.95 72.23
Degraded r. pf/px 02.52 02.85 02.73 02.46 03.16 02.78 02.64 03.13 02.63

Titan is a 18,688 nodes machine deployed at ORNL since
early 2013. Each node has one AMD Opteron 6274 CPU
(with 32 GB of DDR3 memory) and one NVIDIA K20X GPU
(with 6 GB of GDDR5 memory). Each blade has two high-
speed interconnect Gemini routers, each shared by two nodes.
NVIDIA K20X GPU has a total of 14 streaming multipro-
cessors, each streaming multiprocessor has 192 CUDA cores.
Overall, each GPU has peak performance of over 1.30 Tflops
(double precision). Titan supercomputer is able to perform
at a theoretical peak of 27 petaFLOPS [6]. We analyzed
system failure for the Titan supercomputer for Jun 2013 to
Feb 2015. We note that it is very complex to breakdown the
failure root cause for some of the failures without introducing
inaccuracy. Therefore, we omit the particular breakdown of
failures in Table I without affecting the conclusion of this
study. Nevertheless, overall we observed the failure regimes
and those results are included in Table II, more details can
be found here [18], [14], [17], [12].

For all systems, we used the failure categorization given
by the system administrators in each center, and we group
each failure in one of the following categories: hardware,
software, network, environment, and unknown (i.e., failures
cause could not be determined). Table I shows the timeframe
analyzed for each system and their failure characteristics.

B. Regimes
Several studies analyzing HPC systems have concluded that

the failures follow an exponential or Weibull distribution; thus



(a) Failures correlation (b) Regime characteristics (c) Accurate regime detections VS false positives

Figure 1. Analysis of failures in petascale systems

all the models used so far assume that successive intervals
between failures are independent. We created a simple, yet
effective algorithm to test this hypothesis.

The algorithm follows the following four steps:

• We extract the standard MTBF by dividing the time
length for each system to the number of failures that
occurred in the given time frame. For this purpose, a
filtering mechanism is applied first in order to isolate
individual failures from their cascading occurrences

• We divide the time frame of each system in segments of
their corresponding MTBF length. If failures are indeed
independent to each other and uniformily distributed,
each segment will show at most one failure.

• We count the number of failures in each segment, after
which we aggregate this information for all segments
that present the same number of failures. We use xi
to denote the number of segments with i failures with
i=0,1,or any number > 1. The segments with 0 or 1
failure define the normal regime, while those with more
than one failure indicate a degraded regime.

• We define fi as fi = xi∗i, which gives the total number
of failures for each type of segment. This information
will allow us to compute the percentage of failures that
occur in degraded regimes.

The first step of our algorithm assumes a filtering method
that will correctly match multiple failures indicated in failure
logs to one individual failure. We processed each message
type by choosing different thresholds that allowed us to
isolate unique failures from redundant ones, in both space and
time. For example, some memory failures can appear multiple
times during the execution of an application because of
repeated access to the corrupted component when a memory
module failed. At the same time, transient correctable errors
in these components can generate isolated single messages
but not affect an application, so they are of no interest for
our study. Figure 1(a) presents scenarios where failures need
to be filtered across different nodes or in time. We use the
method from [20] to remove redundant failures of the same
type both in space and time for all our systems, before

applying our algorithm. For the systems that offer failure
logs written by system administrator, filtering in time is not
necessary since notifications were gathered into a single row.

C. Results

Table II presents the results obtained when applying our
algorithm on the systems presented in Section II-A. We define
the percentage of failures that occur in the normal/degraded
regimes as pf = fi∗100∑

fi
and the percentage of segments

that represent the normal/degraded regimes as px = xi∗100∑
xi

.
The ratio between pf and px defines the multiplier to the
standard MTBF that gives the MTBF of the current regime.
For systems whose failures follow an exponential distribution,
the normal regime pf and px should both be close to 100%.

As seen in the table, all the analyzed systems present
degraded regimes. For the Blue Waters system, the degraded
regime is present in 24% of the system’s lifespan, during
which time 75% of the failures occur. In other words during
degraded regimes, Blue Waters experiences an MTBF 3
times shorter than the standard MTBF. Similarly, all systems
show a degraded regime that takes 20-30% of each system’s
timeframe and that presents between 60 to 78% of all failures
affecting the system. We can no longer assume exponential
distribution of failures in HPC systems, and one can expect
degraded regimes with 2.5 to over 3 times more failures.

Moreover, during the normal regimes the frequency of
failures is much lower than expected with only 25%-40%
failures occurring in more than three quarters of the entire
lifespan of a system. This means that for most of the system’s
lifetime the standard MTBF represents only a fraction of the
actual MTBF. For example, for Blue Waters, the MTBF for
the normal regime is around three times higher than what is
considered for computing the optimal checkpoint interval.

Figure 1(b) presents a concise view of the regimes
identified in the previous table. The first column for each
system presents the percentage of time spent in normal and
degraded regimes while the second presents the percentage
of failures occurring in each regime. It is quite visible that
all systems present almost 75% of the failures in around 25%



of the time. The figure also makes it easier to compare the
results between systems, showing that supercomputers today
(represented by Tsubame and Blue Waters) have, in general,
larger percentages of failures in shorter time intervals. We
can expect this trend to increase in future systems.

We analyzed the properties of failures occurring inside
degraded regimes. Around two thirds of the regimes have
a time span of more than 2 standard MTBFs during which
more than 30 failures occur in each. Depending on the
system and on each regime, the failures can be fitted by
the Weibull and Exponential distributions with different
parameters. Due to space limitation we cannot show our
detailed analysis. However, our results show that the standard
formula for computing the checkpoint interval can be used
inside degraded regimes.

D. Regime detection

A degraded regime is defined by an increase in failure
frequency. Thus, a regime change from normal to degraded
each time the system encounters a failute would hold a false
negative rate of 0%. However, since not all failure indicate
the beginning of a degraded regime, this method will give
false positives. The second column for each system from
Figure 1(b) shows the percentage of failures occurring in
each regime. Thus, less than 25% of total failures trigger
an unnecessary regime change, keping the false positive rate
around 50%. However, the regime is switched back to normal
after a time frame equal to half of the standard MTBF.

In order to decrease the rate of false positives for this
default detection mechanism, we look into more detail at
the types of failures that usually occur during degraded or
normal regimes. We use the following steps in order to find
patterns of failures that can indicate degraded regimes:

• Instead of listing the number of failure per segment we
keep a list of failure types that occur on each segment.

• For each failure type i we count the segments during a
normal regime where i occurs alone in ni.

• For each failure type i we count the segments during a
degraded regime where i occurs first in di.

• We compute the percentage of time a failure type
occurs in normal regimes as ni∗100

counti
. Since for detection

purposes, we only care about the ratio of the number of
times the failure occurs in normal regimes to how many
times it occurs as a first failure in a degraded regime,
we also compute pni = ni∗100

ni+di
. In degraded regime we

can ignore the occurrences of this failure type.

We identified several failure types for all systems that
can improve detection. Table III shows a couple of failure
types examples and their pni percentages for two of the
analyzed systems. When only considering the failure types
that always occur during normal regime (pni=100%) we still
detect correctly all degraded regimes, but now we decrease
the false positive rate to 30-35% depending on the system.

This corresponds to between 10-15% of all failures triggering
a regime change unnecessarily.

Tsubame 2.5 LANL systems
Failure type pni Failure type pni

SysBrd 100% Kernel 100%
GPU 55 % Memory 61%

Switch 33 % Fibre 100%
OtherSW 100.0 % OS 49%

Disk 66 % Disk 75%

Table III
FAILURE TYPES OCCURRING IN NORMAL REGIME

When also including failures that most of the time occur
during normal regimes (pni > X for X in {75%-100%})
we can play with the ratio between the number of false
positives and the accuracy of the degraded regime detection.
Figure 1(c) presents the trade-off between these two metrics
for the LANL system 20 for different thresholds for pni.

III. REAL-TIME MONITORING AND DYNAMIC
CHECKPOINTING

A dynamic checkpointing scheme can take advantage of
those different failure regimes in an HPC machine, if several
components are provided. First, a monitoring system must
exist, to discover events from as many parts of the system as
possible. Second, a notification system needs to provide this
information to the checkpointing runtime. Then, that runtime
must be aware that this information is available and must
have policies in place to react to those notifications.

While current machines do have a fault monitoring,
notification, and management system, those components
are considered part of the administration software. Their
purpose is to notify system management staff and, to a lesser
extent, the job scheduler, so that failed components can
be repaired, exchanged, or reconfigured. Moreover, current
machine configurations tend to destroy any job encountering
a failure, without the application being able to act on it.

Nevertheless, we expect future machines to provide more
details on the current status of the system, and we also expect
that runtime systems will be capable of using that information
to react to failures. As an example, the Argo project [5] is
building an operating system and runtime software stack for
exascale systems and includes a fault management component
linked to a publish/subscribe infrastructure available to
application runtime systems. In the meantime, it might be
possible to collocate with a user job this kind of service.
To this extent, we first describe here a prototype event
monitoring, notification, and filtering system, to validate
that this approach is reasonable. In particular, we want to
test notification latency, overhead of the on-the-fly event
analysis, and platform-aware filtering strategies. Then, we
describe a dynamic checkpointing scheme that can use this
monitoring facilities.

A. Monitoring Machine Events
Our monitoring implementation is split into two major

components: a monitor and a reactor. The monitor is



(a) Latency: direct to reactor (b) Latency: mce-inject (c) Reactor Transmission Rate (d) Filtering

Figure 2. Validation results: (a) and (b) show latency distributions using different injection paths (respectively directly to the reactor and by the mce-inject
tool), for 1000 events injected. (c) shows the distribution of the number of events forwarded in a second by the reactor. (d) presents the ratio of failures that
were forwarded by the reactor depending on the probability of its type happening in each regime.

responsible for polling various sources of information inside a
standard Linux node. In particular, we gather events from the
Machine Check Architecture [10] of recent processors. The
reactor receives those events from the monitor and acts on
them based on predetermined rules. We also implemented an
injector, to test the infrastructure by injecting fake events into
the system. These components were prototyped in Python
and use ZeroMQ to communicate with each other. We detail
here those components.

Monitor: our current monitor scans the system for events
originating at several levels. The Machine Check Architecture
is a feature of recent processors generating interrupts when a
correctable or uncorrectable error occurs in the system. This
interrupt is handled by the Linux kernel; if it doesn’t create
a system panic right away, it is forwarded to a user-level
daemon that decodes the information and notifies users. Our
monitor polls the corresponding log files for this information,
encodes it for consumption by the reactor, and forwards
it. Additionally, our monitor retrieves at regular intervals
information from the temperature sensors in the system. This
information includes the location of the sensor (e.g., fan,
CPU), the current reading, and the hardware limits (critical
levels). Finally the monitor gather statistics on network
interfaces and disks to discover errors or intensive use.

Reactor: our reactor implementation is straightforward.
It listens for events, analyzes them, and reacts to them by
either filtering them or forwarding them to an application
runtime. The analysis subsystem is implemented by using
two major ideas: an encoding of all events as set of values
(component, event type, data), and user provided platform
information. The main goal of this reactor is to to attach the
maximum amount of information to important events before
forwarding them while minimizing the noise.

Event Encoding: most of the encoding of our event is
done by the monitor. In particular, the component and event
type identification is directly related to the source of the event
and thus is better applied the first time the event is detected.
That is to say, if an event is received several times in a
short period of time, only one notification is raised to limit
system noise. Nevertheless, we could envision a trend analysis
inside the reactor identifying a slow but steady increase in
temperature, for example, and act on it by rewriting the
encoding of some events.

Platform information: the user can provide to our reactor
information about the events occurring on the machine. This
information would typically originates from the kind of
offline analysis presented in the previous section. For our
experiment purposes, the platform information is used to
map events to information on their occurrence during normal
and degraded regimes.

B. Validation

For such infrastructure to work, several key features need
to be validated. In particular, we want to verify that major
events are detected rapidly, that a cluster of events will not
overload the system, and that our notification/filtering system
provides enough information to a runtime that it can take
useful measures. All these experiments were made on a single
Linux system with an 4 cores Intel i7–4600 CPU and 8 GB
of RAM, kernel version 4.2.2.

First, we measure the latency of a event traveling through
our system. We measure this latency for two different paths:
an event being injected directly into the reactor and a
machine check error being injected into the kernel, caught
by the monitor and forwarded to the reactor. In both cases,
the reactor simply annotates the event with a timestamp
and prints it out. Figures 2(a) and 2(b) give the resulting
distribution of latency for 1,000 events injected. As expected,
an event traveling through the kernel and the monitor takes
significantly more time than sending the event directly to the
reactor. Nevertheless, those latencies are all largely below one
second, a very good latency in the context of checkpointing
runtimes with a resolution in the order of minutes.

Second, we measure the transmission rate of our system:
how many events can be caught and analyzed by our
system per second. While it is unlikely that a single node
experiences a massive amount of failures in a single second,
this experiment can provide some insight for an eventual
distribution on this infrastructure across nodes. Indeed, if
multiple components in an HPC system fail at the same
time, the node gathering those events for analysis must react
efficiently to the sudden flow of events. Figure 2(c) presents
the distribution of the number of events our reactor can
analyze in a second, during the continuous injection of 100
million events per 10 different processes running concurrently.
As we can see, our prototype reactor can receive and analyze



an average of 36,000 events each second. We can expect
that no scenario can produce that many errors in a single
node in a single second. From an analysis of the fault trace
archive traces, we can also say that even on modern systems,
no type of failure triggers that many events at the same time
across the system. Moreover, we expect each source to filter
its own events for better scalability.

One strategy for such filtering is to ignore events depending
on their types and the probability of this type of events to
happen in degraded regimes, based on platform information.
To evaluate such approach, we create traces matching the
systems we analyzed before. Those traces contain a fixed
number of segments, each either a normal regime or a
degraded regime and in each segment, we randomly generate
failures, using the px and pf from Table II. The type of
each failure is then randomly chosen to respect the ratio of
Table I and the ratio of each event type happening in each
regime. The reactor is provided by the platform information
the probability that each type of event occurs in a degraded
regime. Additionally, each segment of the trace starts by
a precursor event: an event carrying a random number,
modifying the platform information only for the events
occurring during the same segment. Finally, we inject those
traces in our monitoring system. The reactor is configured to
filter all event types that happen more than 60% of the time
in normal regime for the system simulated. In this setup,
precursor events simulate live reports for the monitor that the
system is behaving in a certain way (i.e a normal precursor
increase the change that an event is happening during a
normal regime, and vice versa).

We then analyse the injected trace and the filtering applied
by the reactor to measure how many failures happening in
normal regime and in degraded regime have been forwarded
to the runtime. Figure 2(d) reports the results, which across
most system show a high rate of degraded regime events
forwarded and reduced amount of events in normal regimes.

C. Dynamic Checkpointing

We have seen that HPC systems can detect regime
changes by using a lightweight notification system. Once that
notification is transmitted up through the software stack, the
runtime system catches it and adapts to the new regime. In the
case of fail-stop failures, adapting to a degraded regime means
changing the checkpoint interval. In most HPC applications,
however, the checkpoint interval is almost hard-coded in
a certain number of outer-loop iterations. Using such an
approach, one cannot change the checkpoint interval during
runtime.

FTI circumvents this problem by proposing an interface
where the checkpoint function (i.e., FTI_Snapshot) is called
at every iteration and a check is done to see whether
checkpointing is necessary or not. The user provides the
checkpoint interval in wall-clock time (i.e., minutes) in a
configuration file and FTI transforms it into numbers of

Algorithm 1 Dynamic Checkpoint Interval
procedure FTI_SNAPSHOT

addLastIterationLengthToList(IL)
if updateGailIter == currentIter then

GAIL = compute Global Average Iteration Length
IterCkptInterval = wallClockCkptInterval/GAIL
if updateRoof > expDecay*2 then

expDecay = expDecay*2
end if
updateGailIter = currentIter + expDecay

end if
if nextCkptIter == currentIter then

FTI_Checkpoint
nextCkptIter = currentIter + IterCkptInterval

else
received = checkForNewNotifications(noti)
if received then

endRegimeIter, IterCkptInterval = decodeNotification(noti)
end if

end if
if endRegimeIter == currentIter then

IterCkptInterval = wallClockCkptInterval/GAIL
endRegimeIter = -1

end if
currentIter = currentIter+1
end procedure

iterations. To do so, FTI constantly measures the time spent
between two consecutive calls to FTI_Snapshot (i.e. one
iteration) and computes an average, which is later averaged
with all the processes of the application and they agreed upon
a global average iteration length (GAIL). Using GAIL, FTI
can guarantee that a number of minutes will be translated
into the same number of iteration for all the processes in the
application.

Implementing a dynamic checkpointing runtime on top
of this structure is relatively simple. The OS will transmit
a notification and FTI will decode it, match it with an
existing rule and enforce the new checkpoint interval. If a
new notification arrives before the end of the expiration time
of the just enforced rule, FTI will enforce the parameters of
the new notification and reset the expiration time. Algorithm 1
presents the whole algorithm for dynamic checkpoint interval
adaptation. The source code of the dynamic version of FTI
is available online [24].

IV. ANALYTICAL MODELING OF WASTE TIME FOR HPC
APPLICATIONS

In the previous sections we explained how a combination
of online monitoring and dynamic checkpointing could
work together to adapt to different failure regimes. In this
section we develop a model to predict how much wasted
time reduction is achievable for extreme scale systems with
different regime characterizations.

A. Analytical Model

The total wasted time is the sum of the time spent in
checkpoint, restart overhead and re-execution across all the
regions. This can be expressed as following:

T totalwaste =

R∑
i=1

(Cki +Rti +Rxi) (1)

Next, we estimate the time spent in checkpoint, restart
overhead and re-execution for a given region. The number of
checkpoints in ith region can be determined by dividing the



Table IV
PARAMETERS USED IN THE MODEL.

Notation Meaning
T total
waste Total wasted time (ckpt.+restart+re-exec.)
Ex Total (failure-free) computation time
R Number of failure regimes
M Overall MTBF of the system
Cki Time spent in checkpointing in regime i
Rti Time spent in restarting in regime i
Rxi Time spent in re-executing in regime i
pxi Fraction of time spent in regime i
Mi MTBF in regime i
αi Checkpointing interval in regime i
β Time to write one checkpoint
γ Time to restart
ε Average fraction of lost work per failure.

time spent in the ith region by the checkpointing interval in
the ith region (αi) minus one. Therefore, the time spent in
the checkpointing phase can be expressed as:

Cki = (
Ex× pxi

αi
)× β (2)

To estimate the time spent in restart phase and re-execute
phase, we need to calculate the number of failures in the ith

region. Let’s call the combination of one compute interval
(αi) and checkpointing (β) as one pair. One will need to finish
Ex×pxi
αi

such pairs to complete the required computation in
the ith region. Let’s denote these number of pairs as by Pi.

The number of failures in the ith region can be expressed
as the difference between the total number of trials needed
to complete Pi pairs without encountering a failure and the
number of times the pairs completed successfully (Pi). Recall
that each pair is a combination of compute and checkpointing
activity, (αi + β). Therefore, the number of failures in the
ith region can be expressed as:

fi =
Pi

1− Pr(t < (αi + β))
− Pi (3)

For an exponential distribution, the probability of failure
before time t is given by Pr(X ≤ t) = 1− e−

t
M . Therefore,

the above expression can be rewritten as:

fi = Pi(e
αi+β

Mi − 1) (4)

Where Pi is equal to Ex×pxi
αi

. Therefore, the time spent
in restart phase can be expressed as:

Rti =
Ex× pxi

αi
(e

αi+β

Mi − 1)× γ (5)

The time spent in the re-execute phase is the number of
failures in the ith region (as calculated earlier) multiplied

by the average lost work per computation and checkpointing
phase. If the average fraction of lost work per failure is
denoted by ε, then the lost work per computation and
checkpointing phase can be estimated as ε(αi+β). Therefore,
the time spent in the re-execute phase can be expressed as:

Rti =
Ex× pxi

αi
(e

αi+β

Mi − 1)× (ε(αi + β)) (6)

Altogether, the total wasted time can be expressed as:

T total
waste =

R∑
i=1

((
Ex× pxi

αi
)× β (7)

+
Ex× pxi

αi
(e
αi+β
Mi − 1)× (ε(αi + β) + γ))

We note that ε, average fraction of lost work per failure,
is dependent on the inter-arrival time of failure events as
reported by a previous study [16]. If the failure inter-arrival
times follow an exponential distribution, then ε can be
approximated as 0.50. If the failure inter-arrival times follow
an Weibull distribution, then ε can be approximated as 0.35.
However, it does vary depending on the same parameter.
The failure regime observation is better aligned with the
failure inter-arrival times following an Weibull distribution
because failure regimes essentially indicate that there is
temporal locality in failures. Previous work has shown
that temporal locality in failures in better modeled by the
Weibull distribution [16]. Furthermore, Young’s formula for
the optimal checkpointing interval is

√
2Miβ [32]. We can

substitute αi by this in the previous equation to simplify the
expression for total wasted time.

B. Wasted Time Reduction Projections

We next want to evaluate how much reduction of wasted
time we can achieve by exploiting the idea of multiple failure
regimes and a dynamic checkpoint interval. We use the analyt-
ical model presented in Section IV-A to compute the wasted
time for each regime. Following the analysis in Section II, we
limit the number of regimes R to 2, the normal regime and
the degraded regime. We create a battery of 9 systems with
different failure regime characteristics. We characterize the
systems with a new parameter mx = MTBFnormalregime

MTBFdegradedregime .
When a system exposes highly temporally clustered failures,
degraded regimes tend to have short MTBF and normal
regimes long MTBF, giving as a result a high mx value. In
contrast, a system with similar regimes will have a mx = 1.

Figure 3(a) shows the failure frequency for a system with
four different mx values. In all four cases the system has an
overall MTBF of 8 hours but different regime characteristics.
We notice that the first scenario has a uniform distribution
of failures (i.e.,mx = 1), with rarely more than two failures
hitting the system in the same hour. For the same reason,



(a) Failures for Different mx (b) Wasted Time Composition (c) Wasted Time VS MTBF (d) Wasted Time VS Checkpoint Cost

Figure 3. Analysis of wasted time in exascale systems with different regime characteristics

we see few areas of no failures in this system. As we
move to higher mx values, we notice that the system shows
higher failure bursts and also longer periods of time without
failures. According to our study of HPC systems, mx = 09
corresponds to the Tsubame 2.5 supercomputer, where about
80% of the failures occur in only about 30% of the time. We
observe that such a system could benefit from two different
checkpoint intervals. We also study systems with a higher
failure density on the degraded regime, since future systems,
with more shared components, could show a higher degree
of correlated failures.

We use our model to compute the wasted time for each
of the phases and regimes of systems with largely different
regime characteristics. We use the same overall MTBF of 8
hours, and a checkpoint cost of 5 minutes, and restart cost of
5 minutes for all cases. The only variation among them is the
regime characteristics (i.e., mx). In Figure 3(b) we can see
that is mx increases, the wasted time decreases. For a system
with mx = 81 the wasted time can be reduced by 30% in
comparison with the same system but with mx = 1. We also
notice that the wasted time of degraded regime is larger than
the wasted time in normal regime. This is consistent with
the fact that most failures happen in degraded regime.

The MTBF of exascale systems is uncertain. Thus, we
study how the overall MTBF of the system impacts the
wasted time for four different regime characteristics. Using
our model, we compute the wasted time for an exascale
system with an MTBF varying between one to ten hours. We
assume a fixed checkpoint cost of 5 minutes. In Figure 3(c)
we plot the wasted time for the same system but with the
four different regime characteristics presented in Figure 3(a).
We observe that the wasted time decreases as the MTBF
increases, which was expected. However, we also observe
that systems with high mx perform badly for short MTBF.
Then, as we increase the MTBF this reverts, to the point
that a system with high mx spends 30% less wasted time
than a system with a low mx. To understand this behaviour,
we examined the composition of the wasted time for each
one case and we discovered that systems with low MTBF
and high mx will spend an extremely large amount of time
in degraded regime. This is because the MTBF in degraded
regime is so low that is comparable with the checkpoint cost,
making almost impossible to progress in the execution.

Then, in Figure 3(d) we study how the checkpoint cost
impacts the wasted time for systems with different regime
characteristics. We assume a fixed MTBF of 8 hours and
a checkpointing cost between 1 hour and 5 minutes. This
is assuming a transition from file system checkpointing to
burst buffers and then checkpointing in NVM. Again, we
observe that for systems with costly checkpoints and high
mx the overhead is extremely high. After detailed analysis,
we understood that in those cases, the checkpoint interval in
degraded regime is very close to the checkpoint cost, making,
again, execution progress substantially difficult. However, as
the checkpoint cost decreases, the trend reverts and systems
with high mx show up to 30% reduction in wasted time.

Overall, we understood that for systems where the MTBF is
not substantially longer than the checkpoint cost, the situation
worsens on degraded regime, making execution progress
challenging. This leads to an extremely high wasted time and
overhead. However, systems where the MTBF is significantly
larger than the checkpoint cost, show clear benefits (over
30% reduction in wasted time)of detecting failure regimes
and adapting to them dynamically.

C. Discussion
We have found that multi-petaflop machines used in

production today expose clear periods of time with high
failure density, sometimes up to three times higher than
the average rest of the time. There are several reasons
that could explain such phenomena. For instance, after a
machine is upgraded with new hardware, the early infant
mortality failures generate a period of time with higher failure
density. Another explanation for the presence of such regimes
is when a shared component (e.g., Parallel File System)
fails intermittently producing multiple job crashes before
shutting down completely. Indeed, from the moment a failure
occurs until the system administrators finds the root cause
of the failure, the same component could generate multiple
failures before being fixed. Furthermore, some failures can
be detected and understood quickly, but the measures taken
to address the problem could take significant time to produce
the desired effect. For instance, a malfunctioning cooling
system could be detected and fixed in a timely fashion, but
the temperature of the racks could take a certain time to
decrease, during which multiple failures could happen. These
are just some examples of the reasons that could explain the



presence of such degraded regimes. Unfortunately, we don’t
have enough data about the systems we studied, to explain
all the causes of the degraded regimes in those systems,
although some patterns were found.

Indeed, we analyzed the types of failures that happen
more frequently in each regime in order to detect regime
changes. Given that most failures occur in degraded regime
we try to discover which ones have a high probability of
occurring in normal regime, so that they are filtered by our
monitoring system and they do not trigger any action in the
resilience runtime. We proved that our monitoring system
could efficiently forward enough information that will allow
the runtime to dynamically adapt to the regime changes.
However, our monitoring system is just a proof of concept
and could be greatly improved using more sophisticated
techniques coming from the system monitoring and data
analytics literature. The goal of this research is not to study
how to build a real-time monitoring system, but rather to
show what could be achieved if we had one, in the context
of fault tolerance for large scale HPC system.

We note that regime detection and failure prediction are
two different problems. A monitoring system trying to detect
regimes has constant uncertainty about when and where the
next failure will occur, while a failure predictor is constantly
trying to reduce that uncertainty to zero. Failure predictors
try to foresee events in the future, in regime detection we
analyzed events that already happened to try to understand
the current status of the machine. This study show insights
in what could be more beneficial in the future. That is, if we
know that a certain type of failures happens in bursts and
another type of failures occur following a uniform distribution,
one should put more effort on limiting the later type of
failures, as the number of failures occurring during burst is
irrelevant as far as the burst does not last too long.

V. RELATED WORK

There are multiple studies that look at the statistics of
events and failures generated by several systems, including
the root cause of failures, the mean time between failures,
the mean time to repair and the distribution of failures.

Table V
FAILURE DISTRIBUTION FOR SEVERAL SYSTEMS

System Failure distribution Citation
O2K Weibull distributions Lu et al [25], 2013
Titan Weibull distribution Tiwari et al [16], 2014

Platium Exponential distribution Lu et al [25], 2013
Blue Gene/L Weibull distribution Taerat et al [15], 2009
Blue Gene/P Weibull distribution Harper et al [21], 2009

20 systems at LANL Weibull distribution with decreasing hazard rate Schroeder et al [27], 2010

Table V presents an overview of these studies, the analyzed
systems and their observed failure distribution. All studies
show Weibull, exponential or lognormal distributions for the
failure inter-arrival time. In [28], the authors investigate how
the time since the last failure influences the expected time
until the next failure. In general, the system they analyze

are well fit by a Weibull distribution, in most cases with a
shape parameter of less than 1, indicating that the hazard
rate function is decreasing.

The study from [30] uses the failure trace obtained from
prominent HPC platforms to study and compare different
distributions, Exponential, Weibull and Lognormal for fitting
the failures that affect applications running on k nodes. Their
results indicate that Weibull distribution results in the better
reliability model in most of the cases for the given data. In
our experience, an upgrade of the filesystem will be followed
by numerous failures of different types.

System monitoring: In general, HPC system vendors
integrate management systems (e.g., Cray’s Node Health
Checker [4] or IBM’s Cluster Systems Management [8])
that aim at ensuring job completion and providing system
administrator with a way to check the sanity of the machine.
Cray’s node health checker is automatically invoked by the
scheduler upon the termination of an application.

One method used extensively in the past was to measure
each node’s behavior and compare it to all other nodes
executing similar workloads. An event is categorized as a
failure in case of a significant deviation [33], [29]. Another
similar type of method models the components and their
interactions and then monitors the model. Most examples
are using pattern recognition [26], [31] algorithms to model
the system. Others include context free grammars [9] and
mathematical equations [2]. More specific methods focus on
the software stack of a HPC system.

For our purposes, these methods are orthogonal since our
focus is not failure detection, but rather regime detection.
Since most of the failures are part of a degraded regime, we
only need to identify patterns in failures the occur in normal
regimes in order to avoid unnecessary regime changes. While
these methods have the potential of being adapted to detect
regimes, it is beyond the scope of this paper.

VI. CONCLUSIONS

In this paper we study several HPC systems and discover
the presence of periods with up to three times higher failure
density than the rest of the time. We analyze failure patterns
and we identify regime changes based on the failures types.
We design and test a monitoring system that listen, analyzes,
filters, and forwards fault events to the reliability runtime
to notify about regime changes. We implement a dynamic
checkpointing scheme capable to adapt on-the-fly to regime
changes. Then, we build an analytical model able to predict
waste reduction for future supercomputers. We demonstrate
that some systems can reduce over 30% of wasted time using
this approach. To the best of our knowledge, this study of
failure regimes in HPC systems and the benefits that can
be obtained from it, is the first of its kind. As future work,
we would like to improve our regime detection mechanisms
using more sophisticated analytics.



VII. ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Advanced Scientific
Computing Research Program, under Contract DE-AC02-
06CH11357. The work also used the resources of the Oak
Ridge Leadership Computing Facility, located in the National
Center for Computational Sciences at ORNL, which is
managed by UT Battelle, LLC for the U.S. DOE (under
the contract No. DE-AC05-00OR22725).

REFERENCES

[1] National Center for Supercomputing Applications at the
University of Illinois. www.ncsa.illinois.edu.

[2] Artur Andrzejak and Luis Moura Silva. Deterministic models
of software aging and optimal rejuvenation schedules. In
Integrated Network Management, 2007.

[3] Leonardo Arturo Bautista-Gomez, Seiji Tsuboi, Dimitri Ko-
matitsch, Franck Cappello, Naoya Maruyama, and Satoshi
Matsuoka. FTI: High performance fault tolerance interface
for hybrid systems. In SC, 2011.

[4] J. Becklehimer, C. Willis, J. Lothian, D. Maxwell, and D. Vasil.
Real time health monitoring of the cray xt3/xt4 using the
simple event correlator (sec)., 2011.

[5] Pete Beckman, Marc Snir, et al. Argo: An exascale operating
system and runtime research project. http://www.argo-osr.org/.

[6] Buddy Bland. Titan - early experience with the titan system
at oak ridge national laboratory. SC Companion:, 2012.

[7] Shekhar Borkar. Designing reliable systems from unreliable
components: The challenges of transistor variability and
degradation. IEEE Micro, 2005.

[8] V. Castelli, R.E. Harper, P. Heidelberger, S.W. Hunter, K.S.
Trivedi, K. Vaidyanathan, and W.P. Zeggert. Proactive
management of software aging. IBM Journal of Research
and Development, 2001.

[9] Mike Y. Chen, Anthony Accardi, Emre Kıcıman, Jim Lloyd,
Dave Patterson, Armando Fox, and Eric Brewer. Path-based
failure and evolution management. In NSDI, 2004.

[10] Intel Corporation. Intel 64 and IA-32 architectures software
developer’s manual.

[11] John T Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Generation
Computer Systems, 2006.

[12] Gupta et al. Understanding and exploiting spatial properties
of system failures on extreme-scale hpc systems. In DSN,
2015.

[13] Martino et al. Lessons learned from the analysis of system
failures at petascale: The case of Blue Waters. In DSN, 2014.

[14] Nie et al. A large-scale study of soft-errors on gpus in the
field. In HPCA, 2016.

[15] Taerat et al. Blue gene/l log analysis and time to interrupt
estimation. In ARES, 2009.

[16] Tiwari et al. Lazy checkpointing: Exploiting temporal locality
in failures to mitigate checkpointing overheads on extreme-
scale systems. In DSN, 2014.

[17] Tiwari et al. Reliability lessons learned from gpu experience
with the titan supercomputer at oak ridge leadership computing
facility. In SC, 2015.

[18] Tiwari et al. Understanding gpu errors on large-scale hpc
systems and the implications for system design and operation.
In HPCA, 2015.

[19] D.G. Feitelson. The supercomputer industry in light of the
Top500 data. Computing in Science Engineering, 2005.

[20] S. Fu and C. Xu. Quantifying temporal and spatial fault event
correlation for proactive failure management. SRDS, 2007.

[21] Thomas J. Hacker, Fabian Romero, and Christopher D.
Carothers. An analysis of clustered failures on large super-
computing systems. In JPDC, 2009.

[22] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and
F. Cappello. Modeling and tolerating heterogeneous failures
in large parallel systems. In SC, 2011.

[23] William Kramer. Introduction to the Blue Waters Project.
National Center for Supercomputing Applications, 2014.

[24] Leonardo Bautista-Gomez. Dynamic version of FTI.
https://github.com/leobago/fti/tree/dynamic, 2015.

[25] Charng-Da Lu. Failure data analysis of hpc systems. Technical
Report CoRR abs/1302.4779, 2013.

[26] Felix Salfner. Modeling event-driven time series with gen-
eralized hidden semi-markov models. Technical Report 208,
Department of Computer Science, Humboldt University, 2006.

[27] B. Schroeder and G.A. Gibson. A large-scale study of failures
in high-performance computing systems. TDSC, 2010.

[28] Bianca Schroeder and Garth A. Gibson. Understanding failures
in petascale computers. Journal of Physics: Conference Series
78:012022, 2007.

[29] Jon Stearley and Adam J. Oliner. Bad words: Finding faults
in spirit’s syslogs. CCGRID, 2008.

[30] T. Thanakornworakij, R. Nassar, C. B. Leangsuksun, and
M. Paun. Reliability model of a system of k nodes with simul-
taneous failures for high-performance computing applications.
IJHPCA, 2013.

[31] Kenji Yamanishi. Dynamic syslog mining for network failure
monitoring. In KDD, 2005.

[32] John W Young. A first order approximation to the optimum
checkpoint interval. CACM, 1974.

[33] Z. Zheng, Y. Li, and Z. Lan. Anomaly Localization in Large-
Scale Clusters. Cluster, 2007.

[34] Z. Zheng and L. Yu. Co-analysis of RAS Log and Job Log
on Blue Gene/P. IPDPS, 2011.


